首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29538篇
  免费   2243篇
  国内免费   1593篇
工业技术   33374篇
  2024年   23篇
  2023年   249篇
  2022年   326篇
  2021年   728篇
  2020年   515篇
  2019年   370篇
  2018年   342篇
  2017年   466篇
  2016年   623篇
  2015年   770篇
  2014年   1415篇
  2013年   1472篇
  2012年   1614篇
  2011年   1668篇
  2010年   1731篇
  2009年   1708篇
  2008年   1751篇
  2007年   2050篇
  2006年   1848篇
  2005年   1814篇
  2004年   1476篇
  2003年   1523篇
  2002年   1248篇
  2001年   1201篇
  2000年   1071篇
  1999年   867篇
  1998年   721篇
  1997年   634篇
  1996年   568篇
  1995年   511篇
  1994年   429篇
  1993年   285篇
  1992年   233篇
  1991年   195篇
  1990年   147篇
  1989年   134篇
  1988年   93篇
  1987年   84篇
  1986年   71篇
  1985年   72篇
  1984年   86篇
  1983年   62篇
  1982年   61篇
  1981年   27篇
  1980年   24篇
  1979年   19篇
  1978年   8篇
  1977年   16篇
  1971年   3篇
  1961年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.  相似文献   
2.
The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.  相似文献   
3.
Herein, we report effective, C-type lectin mannose receptor (MR)-selective, in vivo dendritic cell (DC)-targeting lipid nanoparticles (LNPs) of a novel lipid-containing mannose-mimicking di-shikimoyl- and guanidine head group and two n-hexadecyl hydrophobic tails (DSG). Subcutaneous administration of LNPs of the DSG/p-CMV-GFP complex showed a significant expression of green fluorescence protein in the CD11c+ DCs of the neighboring lymph nodes compared to the control LNPs of the BBG/p-CMV-GFP complex. Mannose receptor-facilitated in vivo DC-targeted vaccination (s.c.) with the electrostatic complex of LNPs of DSG/pCMV-MART1 stimulated long-lasting (270 days post B16F10 tumor challenge) antimelanoma immunity under prophylactic conditions. Remarkably, under therapeutic settings, vaccination (s.c.) with LNPs of the DSG/pCMV-MART1 complex significantly delayed melanoma growth and improved the survival of mice with melanoma. These findings demonstrate that this nonviral delivery system offers a resilient and potential approach to deliver DNA vaccines encoding tumor antigens to DCs in vivo with high efficacy.  相似文献   
4.
DNA can experience “replication stress”, an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.  相似文献   
5.
6.
常规的管线布置优化方法难以在优化过程中得到全局搜索的最优解,导致安全性能无法得到保障,因此面向智慧小镇建设设计一个新的机房电气管线多目标优化布置方法。设置电气管线约束条件,将电压均值、单位时间内电流量、电气管线损耗恢复能力作为目标函数。优化管线布置全局搜索,使用交叉操作的方式不断得到更优解。建立多目标优化电气管线模型,得到电气管线多目标优化的数学模型。通过实验数据可知,该管线布置方法在算法测试中优于常规的3种算法,且在安全性能的检测中只与标准最优值相差6.22×104,3个常规方法与标准最优值的差距为6.813×104、7.6×104、8.32×104,因此可知该多目标优化的管线布置方法可以得到更优解。  相似文献   
7.
互联网通讯采取标准化模式主要以TCP/IP协议为载体,通讯的优越特性体现在同时具备便捷性与开放性,为办公提供很大的便利,但基于网络系统也会入侵病毒、也会给信息数据与办公体系安全性造成威胁,直接影响企业综合稳定发展。据此,为保障办公工作的顺利开展,本文对计算机网络办公自动化及安全策略进行详细分析。  相似文献   
8.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
9.
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.  相似文献   
10.
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号